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Abstract-The liquid-to-vapor transition that occurs when a liquid comes into contact with a hot wall is 
considered. Statistical mechanics are used to derive an approximate local equation of state for the fluid as 
a function of distance from the wali and to arrive at a wall rewetting criterion. The contact angle is a 
convenient parameter characterizing the liquid-solid interaction under these conditions. It is shown that 
the spinodal temperature is a good estimation for the maximum superheat temperature that a liquid can 

sustain on a wall for most situations encountered in rewetting experiments. 

INTRODUCTION 

REWE~ING phenomena refer to the transitions 
between initial heat transfer regimes characterized by 
a high-temperature and essentially dry wall, to regimes 
where the wall is predominantly wetted and has a 
high heat transfer coefficient. These phenomena are 
important in the analysis of a loss of coolant accident 
of a nuclear reactor and are also encountered in other 
industrial applications such as cryogenic processes or 
filling of liquefied natural gas pipelines. In the simplest 
case of pool boiling, the initial dry state corresponds 
to film boiling and the wet state to nucleate boiling. 
The temperature at which this transition takes place 
is referred to as the minimum film boiling (MFB) 
temperature. The term MFB is often used to describe 
other analogous returns to wetted-wall boiling. 

In this work, we define the rewetting temperature 
as the temperature at which the liquid can touch the 
wall without being immediately turned into vapor. As 
defined here, the rewetting temperature is not always 
equal to the MFB tem~rature because, in some cases, 
the latter is determined by other important mech- 
anisms such as a hydrodynamic instability. In order 
for the rewetting temperature to be equal to the MFB 
temperature, at least two conditions must be satisfied : 
(a) the vapor film has to be disrupted by some mech- 
anism and (b) the heat removed by direct contact has 
to be significantly higher than that removed through 
the vapor layer. 

An early expression for the MFB temperature in 
pool boiling is due to Berenson [l] ; it is based on a 
Taylor instability of the vapor film separating the 
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hot surface from the liquid. Henry [2] improved this 
model by taking liquid-solid contacts into account. 
Such contacts were observed in stable film boiling by 
Bradfield [3] and studied later by Yao and Henry [4] 
who showed that conditions (a) and (b) above were 
met for pool boiling on a stainless steel heater whose 
dimensions are larger than the Taylor instability 
wavelength. 

Spiegler ef al. [S] assumed that the rewetting tem- 
perature is determined by the maximum superheat 
temperature of the liquid, TMax, because above this 
temperature the liquid would immediately turn into 
vapor and thus could not touch the surface. Rewetting 
models based on this maximum superheat tem- 
perature hypothesis usually consider that rewetting 
will not occur if the liquid temperature at the contact 
point with the solid, T,NT, is higher than a maximum 
temperature at which liquid can exist, TMAX. The 
rewetting temperature is thus given by 

T,NT(Tw = TREw. 7”~) = ThlAx (1) 

where TfNT(TW, T,) is the temperature at the contact 
point between a wall and liquid whose temperatures 
are respectively Tw and T,, as shown in Fig. 1. 

Spiegler et al. [5] assumed that the contact tem- 
perature is equal to the wall temperature at some 
distance from the interface TLNT = Tw, and that TM,, 
is given by the spinodal limit of the van der Waals 
equation of state for the fluid, which at low pressure 
is given by TM,, = ET,, where T, is the thermo- 
dynamic critical temperature. Lienhard [6] gives the 
following expression for the maximum superheat : 

which is based on the spinodal limit of improved 
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NOMENCLATURE 

A atomic number I( chemical potential 

2 
heat capacity /’ density 
thermal conductivity or Boltzmann (T hard sphere diameter 
constant defined by equation (2 1) 

P pressure I potential. 
I distance 
T temperature Subscripts 
1%’ potenlial ATT attractive 
: distance from wall. c critical 

11s hard sphere 
Greek symbols INT interface 

z defined by equation (16) L liquid 
11 surface tension REP repulsive 
i:, strength of wall fluid interaction. REW rewetting 

equation (41) sat saturation 

‘1 defined by equation (28) spin spinodal 
9 contact angle V vapor 
i inverse range parameter. equation (1 I) W wall. 

equations of state and is valid up to the critical press- r,,, - T, = (T,, r - T,) 
ure. 

The maximum superheat can also be determined by 
the homogeneous nucleation theory which is reviewed 
by Blander and Katz [7] and Avedisian [8]. Both the 
spinodal and homogeneous nucleation theories give 
similar results for the maximum superheat tempera- 
ture, as shown by Lienhard and Karimi [9]. The inter- 
facial temperature upon contact can be related to the 
bulk liquid and wall temperatures by the infinite slab 
model, which considers that both liquid and solid 
behave like two semi-infinite slabs of uniform initial 
temperatures TL and T, that are suddenly brought 
into contact. The contact temperature r,,., is given 
by Carslaw and Jaeger [IO] : 

T 
TIN-I = 

w.,~ +tT,, 
I+< 

with 

il k,p,c;a, 
5 =- 

kwpwc;,, 

Baumeister and Simon [I I] considered the transient 
conduction problem in the wall and proposed the 
following expression for this contact temperature for 
Leidenfrost droplets on clean smooth surfaces : 
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FIG. 1. Temperature distribution in the vicinity of the wall. 
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with 

x exp (3.06 x lO’/I) erfc (I 760,//Q (5) 

11 = Q&p,+) ‘> (6) 

calculated in SI units. 
The numerical factors were adjusted to fit exper- 

imental data. erfc (y) is the complementary error func- 
tion : 

erfc (I’) = I -crf (I,). (7) 

These authors also proposed that the maximum super- 
heat is given by 

27 
T MAX = y2,fT, (8) 

where .f is an empirical correction factor to the spi- 
nodal limit which takes surface effects into account; 
for pure metals 

,f’= l -exp [-o.o52 (@!Y;;:!4:ji] (9) 

where A, is the atomic number of the wall and ylv 
the surface tension of the liquid (pw and ycv in SI 
units). Segev and Bankoff [12] assumed that the 
maximum contact temperature is given by the tem- 
perature at which a monolayer of adsorbed molecules 
can exist on the wall. Their results are very sensitive 
to an arbitrary ‘covering’ factor. 

Jt is thus seen that surface material effects can be 
important both in the determination of the interfacial 
temperature upon contact and in the determinat.ion 
of the maximum possible contact temperature. 

In the present work, we consider that the liquid-to- 
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vapor phase transition which occurs when the liquid 
enters into contact with the very hot wall will usually 
take place in the first few molecular layers of fluid 
adjacent to the wall. In these first fluid layers, inter- 
facial phenomena due to intermolecular interactions 
between the wall and fluid take place. The surface 
tension is a manifestation of such effects ; we further 
postulate that certain fluid properties in this region are 
different from bulk fluid properties (see, e.g. Croxton 
[l3]). The scope of this work is to investigate the 
influence on the rewetting temperature of this inter- 
facial fluid region. 

The method adopted is a statistical-mechanical 
derivation of the equation of state of a fluid, in which 
the presence of a wall has been taken into account. 
The fluid is modeled by molecules interacting with 
each other through a pair potential which contains a 
hard-sphere repulsive core and a very weak and long 
range attractive part. For a uniform fluid this model- 
ization leads to a van der Waals type equation of 
state [14]. The fluid in our case is bounded in one 
direction by an impenetrable wall which creates a long 
range attractive potential for the fluid molecules. The 
inhomogeneity in the fluid which is created by the wall 
is treated by an approach originally formulated by 
van Kampen [IS]. Introducing suitable approxi- 
mations, an equation of state is obtained which is 
dependent on the distance from the wall ; the critical 
temperature and pressure, as well as the spinodal tem- 
perature, now depend on the distance from the wall. 
The local equation of state is then applied to the 
specific problem of the determination of the maximum 
superheat temperature of a liquid in the presence of a 
wall and is compared to experimental data. 

The contact angle between a liquid and a solid can 
he related to the intermolecular potential for a specific 
choice of potentials. as shown by Sullivan [16]. This is 
clearly useful for comparing the theory with exper- 
imental data, since the contact angle is a convenient 
parameter characterizing the liquid-solid interaction. 

EQUATION OF STATE OF A FLUID CLOSE TO 

A WALL 

Mean field theory 
We consider a single-component fluid bounded in 

one direction by a plane impenetrable wall. The liquid 
molecules interact with each other with a pairwise 
additive potential wL(r) which depends only on the 
distance r between two molecules. This potential is 
split somewhat arbitrarily into a repulsive component 
w”,,, which will be taken to be identical to a hard- 
sphere potential, and an attractive component wkTT : 

wL(r) = wk,,+w!+ (10) 

The hard-sphere potential corresponds to an infinitely 
repulsive potential for intermolecular separations 
r < u and a zero interaction for r > Q, where o is 
the molecular diameter. The attractive component is 
assumed to be very weak and long ranged. These 

features can be considered by introducing an inverse 
range parameter il in the following form of the attrac- 
tive potential : 

w&(r) = 1+D(lr). (11) 

In the formal limit 1+ 0, the effect of the attractive 
intermolecular potentials is merely to provide a back- 
ground potential 4” given by ref. [17] as 

4”(z) = s d’r’wk&lr-r’j)p(r’) (12) 
FLUID 

which now acts on a fluid whose molecules have hard- 
sphere interactions given by wkEP. 

In our model, the effect of the wall is to create an 
additional external potential 4” for the fluid mol- 
ecules which is assumed to depend only on the distance 
z from the wall, and becomes infinitely positive for 
z < 0 (hard wall). As a consequence, the density p(r’) 
in equation (12) depends only on the distance z’ from 
the wall because the external potential 4” is a function 
of z’ only. 

The total effective potential Cp(z) acting on a fluid 
molecule is given by the sum of the liquid-liquid and 
liquid-wall contributions : 

$44 = 4”(4+4w(4. (13) 

One is now left with the determination of the prop- 
erties of a hard-sphere fluid (without attractive inter- 
actions) in the presence of a total effective external 
potential 4(z). In the case of a wall potential 4w(z) 
which varies slowly on the scale I-’ and assuming 
that the density profile p(z) is also slowly varying, it 
can be shown [18] that, in the 1+ 0 limit, the non- 
uniform hard-sphere system is determined by the fol- 
lowing balance of potentials : 

p = phsbtz)l +4cz) (14) 

where phs is the chemical potential of a hard-sphere 
fluid at density p(z), and 4(z) is given by equations 
(12) and (13). 

For a fluid of uniform density p(z) = p of infinite 
extent in space (no wall) and no imposed potential, 
4” = 0, equation (14) can be written in the following 
form: 

with 

P = Phs(P) -UP (15) 

CI = - 
s 

d3rwk,(r). 

A van der Waals type expression for the pressure p 
can be derived from equation (15) [ 141, 

P = PhsW-~~P2 (17) 

where phs is the pressure of a hard-sphere fluid at 
density p. 



and to the chemical potential by the thermodynamic 
identity 
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Constant density approximation 
In order to obtain a local equation of state we 

consider that the fluid contribution @(z) to the total 
mean field 4(r) in equation (12) can be approximated 
by taking the fluid density p(Y) constant over z’ at 
the value p(z) : 

p(3’) = p(z). (18) 

The fluid contribution 4: which is obtained from 
equation (12) with this approximation is given by 

which leads to a local equation of state relating the 
density and temperature to the pressure of the fluid at 
a distance 2 from the wall [ 191 : 

p(p. T; =) = Ph(l’. T) - ;rq3(3)pz (26) 

where phY is the pressure of a uniform hard-sphere 
fluid at density p. &I(4 = P(Z) I d’r’r&,,(lr-r’j). (19) 

kLUI” 

It is clear that the error introduced by this approxi- 
mation will vanish for a uniform system (p(z) con- 
stant) for which equation (19) is exactly equivalent to 
equation (I 2). The error introduced by the constant 
density approximation, equation (IS), depends on the 
degree of non-uniformity of the density p(z) and is 

discussed by Gerweck [19]. It improves as the satu- 
ration temperature of the system increases, or as the 
contact angle of the liquid-solid system decreases. 

The integral over the liquid region in equation (19) 
can be written more explicitly by making use of the 
geometry of the system [19], giving 

&(-) = -cccp(:Mz) (20) 

with 

_ : r(r-z)wkT-T(r) dr 
s 

/ 
(21) 

and 

c(= -47 s / rzwiTT(r) dr. (22) 
0 

Local equation of’statr 
We now consider that at each distance z from the 

wall, fluid behaves like a hard-sphere fluid of uniform 
density in the presence of a total external field b,,(z) 
given by equation (13) in which the approximation 
for the liquid mean field, equation (19), has been 
introduced. Thus equation (I 3) becomes 

9”(Z) = $t(r)+dw(-). (23) 

With this approximation, the chemical potential given 

by equation (14) becomes 

P = ~h\M=)l --c(d=Mz) +$“(=h (24) 

At the distance z from the wall where the local equa- 
tion of state is to be determined, we now consider 
that there is a uniform fluid of density p whose total 
chemical potential is given by equation (24). For this 
uniform fluid the basic thermodynamic relations can 
be applied, and the density is related to the pressure 

(25, 

Different choices can be made for the hard-sphere 
pressure. In the present work, the CarnahanStarling 
[20] equation of state is used because it provides an 

accurate expression for the hard-sphere pressure of a 
three-dimensional fluid. This hard-sphere pressure is 
given by 

/)h\ = pkr(l+g++nl)‘(l -fT)i (‘7) 

with 

II = npa’/% (28) 

where r~ is the hard-sphere diameter. 
The chemical potential for the hard-sphere ex- 

pression for the pressure is obtained from the thcr- 

modynamic relation 

GPhc i/4,\ 
~-~ = p ^ 
i;p 

(29) 
C‘/’ 

which leads, for the CarnahanStarling theory, to 

n,, = kT[ln(~)+q(&9~+3~‘)1(1 -q)i]. (30) 

We now list the different characteristic properties of 

the local equation of state, equation (26). as obtained 
with the Carnahan-Starling hard-sphere theory. The 

critical ratio, Z,, is given by 

7, = _!K - 0 359 IL 
kT,p, = ._ 

(31) 

and the critical point of the local equation of state. 

which according to van der Waals is 

(p+up’)(l -hi’) = ~XTI. 

is given as 

p‘.=A~a ’ (32) 

kT< = &c+) (33) 

(34) 

with A E 0.249 and B % II. 102. 
It is interesting to note that, independently of the 

specific choice of intermolecular potentials, we have 
fromequation (21) that cp(z = 0) = 4 cp(z = x). Com- 
paring this result with the above expressions for the 
critical point, equations (32)-(34), we see that the 
critical temperature and pressure at the wall are half 
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their bulk values, and that the critical density is ccm- 
stant over z. This is due to the vanishing of the wail 
mean tieid contribution r$” in the local equation 
of state, equation (26). Since only ~u~d-fluid con- 
tributions appear in equation (26) and there are no 
fluid molecules in the space occupied by the wall 
(z < 0), the attractive fluid-fluid potential at the wall, 
which determines the critical temperature and 
pressure, is half its bulk value; this gives a critical 
temperature and pressure at the wall that are half their 
bulk values. 

The maximum superheat tcm~ratur~ (spinodal 
limit) af focal pwssure p. is given by the spinodal 
condition 

= 0 at p = Pspin and 7’ =: Spin 

subject to the 
state, equation 

ure p. 

condition that the local equation of 
(26), relates spin and rspin to the press- 

In the limit of infinitely long ranged potentials #” 
and #w and infinitely weak #L, the density profile p(z) 
is given by the solution of the balance of potentials, 
equation (14) f21 J, This density profile can be solved 
analytically for a specific choice of inte~ol~ular 
potentials, as shown by Sullivan [22], and the inter- 
molecular potentials can be related to the contact 
angle [22]. Since this model is used in the present 
work, a summary of its relevant results is presented 
below. 

The following choice of inte~olecular potentials is 
made : 

w”,,,@> = f co for r d 5, 

w$&) = 0 for r > b, 

(37) 

(38) 

f$“(z) = $-GO for z 69, (40) 

A&) = -8,exp (--AZ) for 2 3 0; (41) 

01 is the strength of the ~uid-fled interaction, E, the 
strength of the wall-fluid interaction and 1” ’ is a 
typical length which is taken as identical for both 
interactions. The Yukawa potential for the fluid inter- 
action, equation f39), gives a van der Waals type 
equation of state in the case of a unifo~ fluid ; the 
exponential for the wall, equation (41), allows the 
density profile to be conveniently solved. 

Defining x = AZ and applying d2/dz2 to equation 
(14) with these potentials leads to the following 
results; the details of the derivations are given in ref. 
[ZZ] : 

where 

YG-&) = G.&l, --A2 - 2@0% -P), (43) 

p = Phse?m~-4~F~r WI 

Pm =&-,m); (45) 

p corresponds to the pressure of the fluid at bulk 
density p_ and &, p;t, denote the local hard-sphere 
chemical potential and pressure P&(X)], L+,~[P(x)]. 

The boundary conditions at the wall 4”(z) = f 00 
for z < 0 ; and p(z) = 0 for z -C 0 become 

where 

V&J = Pi% -F - 2&V. (47) 

Once the dependence of the hard-sphere fluid pressure 
and chemical potential are specified by an adequate 
equation of state such as equations (27) and f30), the 
density at the wall p(O) is obtained from equations 
(42) and (46), while the density profile p(x) for x > 0 
is given by quadrature of equation (42). 

In all this discussion the density profile was assumed 
to vary only over a long range A-‘, however, the 
abrupt variation in the external potential at the wall 
creates short range oscillations in this density profile. 
Sullivan [22] shows that it is consistent to neglect these 
short range oscillations in the limit A-+ 0. 

Since for most practical applications related to the 
rewetting phenomena the molecular parameter E, is 
not well known, it is useful to express it in terms of 
the more accessible contact angle 8. The procedure 
developed by Sullivan f16] will be used here. 

We consider a system in which coexisting liquid and 
vapor exhibit a contact angle B on the surface of a 
solid. This contact angle 0 is related to the interfacial 
tensions by Young’s equation : 

where ‘ysv and ysL are the interfacial tensions between 
the solid and the saturated vapor, and the solid and 
saturated liquid. ytv is the interfacial tension between 
coexisting liquid and vapor phases. 

The interfacial tension of a non-unifo~ fluid, in 
which interfacial inhomogeneit~es are taken into 
account, is given by 

Y= 
n+pv ____ 

d 

where Q is the grand potential, p the bulk fluid 
pressure, V the total volume and d the interfacial 
area. The interf’acial tension ys between the solid and 
vacuum should be added in order to obtain the inter- 
facial tension between the quid and the solid. 
However, ys cancels out in the expression for the con- 
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FIG. 2. Relation between the strength of wall fluid inter- 
action C, and contact angle 0 at different saturation tem- 

peratures. 

tact angle, equation (48), and will thus not be intro- 
duced here. 

By using equation (49) and the fluid-wall model 
presented in the preceding section, the following 
expressions for the interfacial tensions are obtained 
[16] : 

+ JV’(&,)) dk., (52) 

where 

I”(,$) = 0. (53) 

The subscripts I and v indicate that the state of the 
fuid at .Y + x. is either saturated liquid or saturated 
vapor. 

The contact angle can now be related to the strength 
of the wall-fluid interaction. Numerical results, giving 
the relation between c,, and I), which are based on the 
solution of equations (48) and (50).-(52) using the 
Carnahan-Starling equation of state, are shown in 
Fig. 2. 

APPLICATION TO REWETTING 

Using the specific choice of potentials introduced 
above (equations (37))(41)), the local equation of 
state (26) becomes 

P(P> T; -x) = Phs(P T) - ‘MM 

cp(.u) = 1 - Jexp (-_u). 

(54) 

(55) 

0.0 1.0 2.0 3.0 4.0 5.0 
x 

FIG. 3. Typical pressure profile in the fluid. 

The critical temperature and pressure. which are 
dependent on the distance from the wall X. are 
obtained from equations (33) and (34), which give 

T,(x) /Q(x) 
T 

~- = c/Q) 
‘.h,dk Pc.holi. 

The critical density is constant : 

P‘(.~_) = PC.h”lL. (57) 

We now have a situation in which the thermodynamic 
properties such as T, and pc are dependent on the 
distance from the wall, as is the pressure P(X) in the 
fluid. This local pressure P(X) is obtained by solving 
the density profile p(x) as described in the preceding 
section and introducing this density in the local equa- 
tion of state (54). 

The local spinodal temperature at the distance .Y 
from the wall is obtained by considering that the fluid 
at x is under the local pressure p(s) and by computing 
the corresponding spinodal temperature T_“(x) as 

given by equations (35) and (36) for the local pressure 

Pu = /J(.r). 
Figure 3 shows a typical pressure profile in which WC 

observe a region close to the wall where the pressure 
exceeds the local critical pressure, indicating a fluid in 
a supercritical state. This region is followed by a zone 
of undercritical pressures. and in some cases the 
pressure becomes negative over a certain range ot 
distances x from the wall, indicating that the fluid is 

under tension at these locations. Liquids under nega- 
tive pressures have been experimentally observed (see 
e.g. Skripov [23]) and the spinodal limit can be 
extended in this negative pressure region [22]. Liquids 
under negative pressure correspond to mctastablc 
states if the system temperature is below the cor- 
responding spinodal temperature ; these liquids arc 
in an unstable state if the temperature is above the 
corresponding spinodal limit. At large distances .Y 
from the wall, the pressure eventually reaches the bulk 
saturation pressure. 

The point x0, where the local pressure is equal to 
the local critical pressure, is defined by 

P]P(.W,,) : .~,I = P,(-Y,l) (5X) 

and in the region 0 < .Y < n, the fluid is at supercritical 
pressures. 

When the fluid comes into contact with a hot wall. 
a temperature profile penetrates the fluid. as shown 
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in Fig. 4. This highly transient situation is clearly 
extremely complex to analyze exactly since it depends 
on the specific boundary conditions imposed on the 
temperature and heat fluxes, and it would require the 
specification of the characteristic length 1- ’ in order 
to be completed. However, it is possible to obtain 
an insight into the effect of the superposition of a 
temperature profile in a form which can be applied 
to a rewetting situation, by making the zero-order 
approximation that the temperature profile does not 
modify significantly the value of the density profile. 
This approximation is clearly not valid as soon as a 
phase transition takes place, since in that case there 
are indeed important variations in the density profile. 
However, before the phase transition occurs we 
assume that the liquid density varies only slightly 
under the effect of the temperature profile. 

We thus consider that the temperature profile is 
applied on a fluid whose thermodynamic properties, 
especially the critical and spinodal temperatures, are 
the same as for the corresponding saturated system. 
Depending on the value of the interfacial temperature 
T ,NT at x = 0 and the fluid-wall situation, different 
mechanisms for the phase transition will take place, 
which are now discussed. 

The creation of a vapor layer between wall and solid 
can occur either through spinodal decomposition 
(unstable regime) or nucleation of a stable bubble 
(metastable regime). We will see that the former usu- 
ally requires that the temperature profile develops 
significantly at distances of the order of x0 from the 
wall, while the latter requires a penetration distance 
of the order of the diameter of a stable bubble. The 
thickness x0 is of the same order as A-‘, which is of 
the order of a few molecular diameters, i.e. a few 

angstroms. Since the thickness x0 of the supercritical 
layer is generally much smaller than the diameter of 
a stable bubble, the time lapse before vaporization is 
expected to be much shorter in the unstable regime 
than in the metastable regime. It is clear that the heat 
removed during a short contact, all other things being 
constant, will be less than for a long contact and 
the same argument that leads to the use of the bulk 
maximum superheat temperature in the determination 
of the rewetting temperature is now invoked to pos- 
tulate that rewetting is not expected if the phase tran- 
sition occurs through the unstable regime. 

Concentrating our attention on whether the super- 

1.0 

0.25 

0.0 xo 1.0 2.0 3.0 4.0 5.0 

x 

FIG. 4. A temperature profile penetrating the fluid. 

position of a temperature profile will lead to unstable 
or metastable regimes, we are led to the conclusion 
that when the interface temperature is higher than the 
minimum value over x of the spinodal temperature, 
there will be an unstable regime. In that case, the 
liquid will be vaporized extremely quickly and thus 
rewetting of the surface is not expected. We define 

thus the interfacial rewetting temperature as the mini- 

mum value of the local spinodal temperature jbr all 

distances from the wall: 

T INT,REW = Min [Tsp&)l. (59) 

One should bear in mind that for rewetting to actually 
occur, the contacts that may potentially lead to re- 
wetting must be created by some perturbation of the 
vapor film. The rewetting temperature as given by 
equation (59) is thus a limit above which rewetting is 
not expected to occur. 

The results presented above can be summarized 
by introducing a factor f’ relating the bulk critical 
temperature T, of the fluid to the interfacial rewetting 
temperature T,NT,REW 

with 

T,NT,REW =S T, (60) 

f = Min [Tspin(X)l/Tc. (61) 

The values of the factor f for different &,/kT, and 
T,,,, obtained numerically, are shown in Fig. 5. 

For a system at a given pressure p,,, this factor 
f has values ranging from the reduced saturation 
temperature T,,,(p,)/T, at low surface wettings (low 
values of E,/kT,) up to values equal to the reduced 
bulk spinodal temperature TSPin(po)/TC for well wet- 
ting surfaces (high values of e,/kT,). The saturation 
values which are obtained at low &,/kT, correspond 
to a situation in which the liquid is almost in the 
presence of a free surface created by the wall, since 
the low interaction with the wall molecules becomes 
similar to the low interaction with the vapor. It is thus 
not surprising to see the phase transition occurring as 
soon as the saturation temperature is reached, as 
would be the case for a fluid in the presence of a free 
surface. For high values of &,/kT, this factor 
f becomes equal to the bulk spinodal temperature 
at pressure pO, as obtained from a classical mean- 

1.0 

0.9 

0.6 

0.6 

0.0 1.0 2.0 3.0 4.0 

%tlkTc 

FIG. 5. Values of the factor f for different E,JkT, and T,,/T, 
values. 
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field equation of state using the ~arnahan-Starling 
expression for the hard-sphere contribution. 

A comparison between experimental data for the 
interfacial contact temperature at rewetting r,,,.,,,, 
and the predicted value f’T, is shown in Fig. 6. The 
interf&cial rewetting temperature has been obtained 

from minimum (essentially pool) film boiling and Lei- 
dcnfrost tem~rature data. The data used here cover a 
large number of fluid/surface combinations in order 
to provide a good assessment of the theoretical results. 
The majority of the points lie in a + 10% range from 
the predicted values and the significant deviations arc 
in the direction of an actual rewetting temperature 
which is lower than predicted. This can be explained 
by the fact that the present model assumes that con- 
ditions (a) and (b) of the Introduction are met. which 
is not always the case. For example, if there arc not 
enough perturbations of the vapor film, the rewetting 
temperature can be very low, as is found in the so- 
called metdstable film boiling situation where film 
boiling over an extremely smooth surface is sustained 
down to temperatures close to saturation. 

DISCUSSION 

Within the present model, the range of inter- 
rnolccular forces i- ’ can be obtained by fitting com- 
binations of contact angle data and liquid---vapor sur- 
face tension data [16]. Values for i ’ of the order a. 

which is generally a few Angstroms, are obtained. This 
is in ~~pparcnt contradiction with the requirement that 

there should be many molecules in the perturbed fluid 
layer, whose thickness is of the order of i ‘. Actually 

there are indeed many molecules in this layer because 
one has to consider not only the direction normal to 
the interface: there are an infinite number of mol- 
ecules in the directions parallel to the interface. More- 
over. by using a spinodal criterion for the maximum 
superheat, there is no minimum size requirement for 
the phase transition to occur, such as a critical radius 
for homogeneous nucleation. Eventually, we note that 
the intcrfacial density change of a free liquids vapor 
surface takes place over a very small distance of the 
order of CT. and that this surf&cc affects the whole 
behavior of the bulk fluid, bringing the phase tran- 
sition temperature to T,,,, while without such an inter- 

face, the phase transition occurs at the higher tem- 
perature r,,,,,, 

We now investigate the effect of surface con- 

tamination of the factor ,f. Surface contamination 
usually increases the contact angle 0 [24], which means 
that the parameter c:,+,/kT, describing the wall-surface 
interaction decreases. At first sight. the effect of sur- 
face con~dmination will thus be a reduction of the 
factor ,f; which implies a reduction of the rew-etting 
temperature. However, the experimental data show 
that surface contamination increases the rewctting 

temperature [I I. 251. This apparently contradictory 
result is explained by two reasons which arc now 

discussed. 
It must first be recognized that one of the features 

of a contaminated surface is the existence of an 
oxide layer which has a low value of the coefficient 
L.'(kp(;I). Consequently. the interfacial temperature 
upon contact will be lower than for a loss con- 
taminatcd surface which has a thinner or no oxide 
layer, allowing a higher rewetting temperature. This 
aspect of surface contamination is able to explain the 
increase of the rcwetting temperature, as shown bp 
Morcaux (‘I trl. [Xl. Along with this efiect which 
increases the rcwetting temperature. a contamination 
of the sur(‘ace is usually not expected to lead to a sig- 
nificant variation of the factor ,f. Indeed, by con- 
sidcring the experimental rewetting situation ofwatct 
on a metallic surface at atmospheric pressure, we have 
for a clean surface a low contact angle 0 z 0 which 
implies a liquid--solid interaction. x,,ikaTL z 5. At 

atmospheric pressure the corresponding factor is 
f’= 0.89. For the same situation, a con~~nlinated sur- 
fact with u contact angle 0 2 45 , which imphes 
;:,%/kT, r 4, will still have the same factor f = 0.89. 
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Even for a contact angle of 60” the variation of the 
factor f is less than 1%. We conclude that surface 
contamination will usually have a negligible effect on 
thefactorf ; whereas because of the thermal resistance 
due to contamination (i.e. the reduced value of k, on 
the surface), the contact temperature, equation (3), 
is reduced, which in turn implies a higher rewetting 
temperature, as is observed in the experiments. 

Coating with poorly wetting materials 

For a Teflon-coated surface, or a surface coated 
with silicon grease, Gaertner [27] reports a qualitative 
decrease in the minimum film boiling temperature of 
water. These surfaces have a contact angle of approxi- 
mately 0 = 108” from which a factor f= 0.72 is 
obtained instead of the bulk value f= 0.89. This cor- 
responds to an important (19%) decrease of the mini- 
mum film boiling temperature with respect to a surface 
which has a low contact angle @ z 0; which is in 
agreement with the qualitative observations made by 
Moreaux et al. 1261. 

Liquid metals 

Liquid metals usually have a rewetting temperature 
which is lower than the one which would be obtained 
from the bulk spinodal temperature [ 11,281. This may 
be partially due to the deviation of liquid metals from 
the conventional equations of state used to determine 
the spinodal limit [27]. The theory which is developed 
in the present work explains this deviation quali- 
tatively, but fails to give an accurate quantitative pre- 
diction for the rewetting temperature. This is because, 
unfortunately, liquid metals fall in the region where 
the local density approximation, which was made in 
order to derive the local equation of state, becomes 
too crude, as shown below. 

A numerical example can be taken for mercury 
which has a contact angle of approximately 0 z 
140” on most metallic surfaces [23]. With a critical 
temperature for mercury of T, = 1735 K, the isotherm 
for the determination of the fluid-wall interaction 
E,/ITT, is 293/1735 = 0.17. This gives a value of 
E,/kT, = 0.5. However, these values of the parameters 
are in a region where the local density approximation 
is not accurate, as shown in ref. 1191, because of the 
relatively large density gradient that occurs in this 
case. The isotherm for the determination of the factor 
f is 630/1735 = 0.36, where 630 K is the saturation 
temperature of mercury at atmospheric pressure. The 
corresponding factor for Ew/kTc = 0.5 is f = 0.36, 

which implies a rewetting temperature equal to the 
saturation temperature T,,,,,, = 630 K, whereas 
experimental rewetting data are in the range of 81 l- 
9.50 K { 111. We conclude that the qualitative trend for 
liquid metals is predicted by the theory, but that an 
accurate prediction of the rewetting value is not poss- 
ible with the present theory because liquid metals are 
in a region where the constant approximation inherent 
to this theory is not accurate. 

CONCLUSION 

A local equation of state for a fluid in the presence 
of a wall has been developed. Applying this theory to 
the rewetting situation, it was shown that the bulk 
spinodal temperature is a good estimation of the 
maximum superheat temperature of a liquid at a wall 
for most liquid-wall situations encountered in rewet- 
ting experiments. This is due to the low value of the 
contact angle which characterizes the most common 
rewetting situations. 
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UNE EQUATION D’ETAT LOCALE D’IJN FLUIDE EN PRESENCE DUNE PAR01 ET 
SON APPLICATION AU REMOUILLAGE 

R&nnP-On considere la transition liquide vapeur qui se produit lorsqu’un liquide entre en contact avec 
une paroi surchauffee. Une equation d’etat du fluide locuic. fonction de la distance a la paroi, est obtenue 
(moyennant certaines approximations) a partir de considerations de mecanique statistique. L’angle de 
contact s’avere &tre un parametre utile pour caracteriser I’interaction hquide-paroi. On montre que pour 
la plupart des situations de remouillage, la temperature limite de stabihte du hquide homogene reste proche 

de la temperature maximale supportable par le liquide en contact avec la paroi. 

EINE ijRTLICHE ZUSTANDSGLEICHUNG FUR EIN FLUID AN EINER WAND UND 
IHRE ANWENDUNG AUF WIEDERBENETZUNGSVORGANGE 

Zusammenfassung-Es wird der Phasenwechsel eines Fluides von fliissig nach dampff‘iirmig bei Beriihrung 
mit einer heil3en Wand betrachtet. Mit Hilfe statistischer Methoden wird eine angenaherte ortliche Zu- 
standsgleichung fur das Fluid als Funktion des Wandabstandes ermittelt. Daraus ergibt sich ein Kriterium 
fiir die Wiederbenetzung. Der Benetzungswinkel ist ein geeigneter Parameter zur Beschreibung der Wech- 
selwirkung zwischen Wand und Fluid bei derartigen Bedingungen. Es zeigt sich, daR die Spinodalen- 
Temperatur ein guter Naherungswert fiir die maximale Uberhitzungstemperatur ist, die ein Fluid an der 

Wand erreichen kann. Dies ergibt sich aus fast allen Wiederbenetzungsexperimenten. 

JIOKAJIbHOE YPABHEHHE COCTO5IHIU XKZI~KOCTZI Y CTEHKki ki El-O 
IIPkiMEHEHkiE K CJIYYAIO lTOBTOPHOr0 CMAWiBAHMI1 

i%UEOTalpP-PaCCMaTpHBaeTCa npo6neMa nepexona OT ~~J~K~cTB K napy npH KOHTaKTe WiAKOcTH C 

roprqefi CreHKoii. Bbleon npH6nnretmoro ~OK~JI~HO~O ypanxiemin coc~omni51 1rcw~3c~n Kar (P~HKIJHE~ 
PaCCTOaHHa OT CTeHKH npOBO&WTca Ha OCHOBe CTaTHcTH'IeCKOii MeXaHHgH,a p3yJIbTaTe ¶erO nOmeH 

xpnTepuii noBTopHor0 cMawnaHsiz4 nonepxiiocrsi. YJ(O~HWI napawzrpoM, XapaxTepwyIoruHM BXHM~- 
netiCTBHe Memy %HLu(OCTbIO H TBepnb‘M TeJIOM B MHX yCllOBEiaX, PBJIaeTCR yron CMB'IWBaHLHRsl. lloKa- 

3an0, 9TO c nobfonwo cnHIiownbaoii TeMnepaTypbI MOXCHO nOnyrMTb XOpOuryrO OWHKY 

MaKcHManbHoii TeMnepaTypbl neperpesa xuinKocTw Ha CreHKe ir.w 6onbuxaIicTsa cnynaea, BCTpeWEO- 
m~XCaB3KCncpHMcHTaXnOnOBTOpHOMyCMaIHBaHHlO. 


